Tänään käsiteltiin desimointi ja interpolointi, jotka toimivat kokonaislukukertoimilla. Näitä yhdistelemällä saadaan kaikki rationaalikertoimet. Molemmat operaatiot tarvitsevat alipäästösuodattimen, joka on yleensä FIR, ja suunnitellaan normaaleilla menetelmillä. Suotimen siirtymäkaistasta todettiin, että se laitetaan aina rajataajuuden alapuolelle. Näin signaaliin tulee vähemmän virhettä kuin jos laskostumista pääsisi tapahtumaan.
Desimoinnissa tapahtuva näytteenottotaajuuden pieneminen toteutetaan yksinkertaisesti jättämällä näytteitä pois tasaisin väliajoin. Esimerkiksi kertoimella kolme jätetään vain joka kolmas näyte jäljelle. Tämä kuitenkin aiheuttaa laskostumista, koska signaalin sisältämät taajuudet pysyvät samoina mutta näytteenottotaajuus pienenee. Tämä saadaan luonnollisesti estettyä suodattamalla signaali ennen alinäytteistämistä sopivalla alipäästösuotimella.
Interpolointi puolestaan koostuu nollien
lisäämisestä sekä tämän operaation tuottamien roskien poistamisesta.
Nollien lisääminenhän tuottaa kopioita ja peilikuvia alkuperäisestä
spektristä, jotka voidaan myös poistaa kätevästi alipäästösuodatuksella.
Oikealla olevassa kuvassa on luennolla ollut esimerkki
näytteenottotaajuuden kolminkertaistamisesta, jossa kahden näytteen
väliin sijoitetaan aina 2 nollaa (yläkuva). Alakuvassa on tuloksen
spektrogrammi, jossa näkyy selkeästi kolme versiota alkuperäisestä
(kaista 0-4000 Hz) taajuuskaistasta (kopio-peilikuva-kopio).Yhdistämällä interpolointi ja desimointi päästään yksinkertaisempaan rakenteeseen huomaamalla kokonaisuudessa olevan kaksi suodatinta peräkkäin, jotka molemmat poistavat tietyn kaistan ylätaajuuksilta. Näin ollen vain toinen niistä on tarpeellinen. Piirtämällä kuva näiden suodinten amplitudivasteista voidaan päätellä kumpi on tarpeeton (aina se, jota vastaava muunnoskerroin on isompi).
Toisen tunnin lopuksi tutustuttiin interpoloinnin sovellukseen D/A-muunnoksessa. Menetelmää käytettiin jo ensimmäisissä CD-soittimissa 1980-luvun alussa ja sen ideana on tehostaa nollannen asteen pitopiirin toimintaa nostamalla näytteenottotaajuus korkeammaksi ennen pitopiiriä. Tämä näkyy aikatasossa porraskuvion hienontumisena ja tätä kautta pitopiirin virheen pienenemisenä jä siirtymisenä korkeammille taajuuksille. Taajuustasossa yli 22,05 hertsin taajuuksille tulee vastaavia heijastuksia kuin interpoloinnin yhteydessäkin. Erona on, että nyt heijastumat vaimenevat sitä enemmän mitä korkeammalle mennään. Digitaalinen interpolointi helpottaa näiden heijastusten poistamista: ilman digitaalista interpolointia tarvittavan analogisen suotimen siirtymäkaistan leveys olisi 2,05 kHz (20kHz...22.05kHz), kun esim. nelinkertaisella interpoloinnilla se saadaan yli 130 kHz:n levyiseksi (väli 20kHz...154,35 kHz).
Ei kommentteja:
Lähetä kommentti